The reason for the advanced algebra prerequisite is due to the use of the log, ln, and its inverse functions, which will occurr in the second semester of the course (in both chemistry & advanced algebra).  I will use these functions and expect that you would also be able to use these functions.  I will not teach you its properties; thus you should either teach yourself or ask your math teacher.  Below is a brief description of the properties of these functions; also, see the following link, which describes the mathematical skills needed in a chemistry course.

 

function, f(x), is a set of instructions to transform / map a number (in the domain) to another number (in the range), e.g.  f(x) = 2x + 5, means "take a number, multiply it by 2, then add 5"

the logarithm of a number is a function abbreivated as "log" 1, which means "take the value of the exponent in 10a ",

e.g.  log 100 =  log 102 = 2;                    log (1/1000) = log 10-3 = -3.

as any number may be expressed as 10a, where "a" need not be an integer, the value of the log of any number does exist, which may not be an integer,

e.g.  log 300 ≈ log 102.477 = 2.477.

an example of a "transitive arguement":  if a = b and b = c, then a = c, shall be used, below, to  justify / prove the following properties of log.

property 1:  log (10a * 10b)  =  log 10a  +  log 10b

as  log (10a * 10b)  =  log (10a + b)  =  a + b

and  log 10a  +  log 10b  =  a + b

therefore,  log (10a * 10b)  =  log 10a  +  log 10b

property 2:  log (10a  ÷  10b)  =  log 10a  -   log 10b

as  log (10a ÷ 10b)  =  log (10a - b)  =  a - b

and  log 10a  -   log 10b  =  a - b

therefore,  log (10a ÷ 10b)  =  log 10a  -   log 10b

property 3:  log (10a)b  =  b log (10a)

as  log (10a)b  =  log (10ab)  =  a * b

and b log (10a)  =  b * a  =  a * b

therefore, log (10a)b  =  b log (10a)

The inverse of a function, f(x), is F(x), where F(f(x)) = x.  For example

if        f(x) = 2x + 5, which means "take a number, multiply it by 2, then add 5"

then   F(x) = (x - 5) / 2, which means "take a number, subtract 5, then divide by 2" is the inverse function of f(x)

thus, F(f(x)) = F(2x + 5) = x  [e.g. F(f(3)) = F(2*3 + 5) = F(11) = 3], that is, an inverse function "cancels" the effect of a function.  The inverse log function would mean "the value of the exponent in 10a is that number", 

e.g.  inverse log 3  =  antilog  3  =  103,

     while inverse ln 3  =  antilog (base e) 3 = e3  ≈   2.7183  ≈  20.09.  

example:  use of the preceding properties.

k = A e -Ea / RT

take the ln of both sides of the equation,

ln k  =  ln (A e -Ea / RT

=  ln A  +  ln (e -Ea / RT)                          [use property 1]

=  ln A  +  ln  { (e1) -Ea / RT }

=  ln A  +  (-Ea / RT) ln e1                     [use property 3]

=  ln A  -  (Ea / RT) ,  since ln e1 = 1.    [see definition of ln, below]

_________________

1 alternatively, the abbreviation, ln, means "take the value of the exponent of ea " ,where e ≈ 2.718,

e.g.  ln 10  ≈  ln 2.7182.303  ≈  ln e2.303  =  2.303

properties 1 - 3 for "log" are valid for "ln".  notice that "2.303" may be viewed as a conversion factor between log & ln, since  2.303 log 10 = ln 10,  i.e.  2.303 log x  =  ln x.